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Perspective

Abstract

The oil and gas sector seeks to adapt to changes in industry 4.0. Advances in computational processing and artificial intelligence have allowed 
machines to perform increasingly complex activities. However, the application of these advances to the activities of the oil industry still involves 
much speculation. While some areas show clear gains with the implementation of machine learning, the exploration and characterization of reser-
voirs still represent a challenge concerning this topic. As the primary information acquired in reservoirs, such as rock and fluid samples, well logs, 
and seismic data, presents a wide range of scales, the real gain from machine learning techniques would likely be integrating different databases in 
different scales. Such integration would improve geological and production models. The spread of information in these databases would also have 
the potential to decrease exploratory success. The joint efforts of oil and gas companies and research and education institutions will be essential to 
increase the oil and gas industry.

 1

Introduction

The industrial sector is undergoing a significant transforma-
tion. Industry 4.0 provided a high level of automation and process 
connectivity. While the industrial revolutions of the 19th and 20th 

centuries generated advances through mechanization and digitali-
zation, advances in computational processing and artificial intelli-
gence make machines able to perform complex processes, such as 
the interpretation of human behavior and decision making.

The oil and gas sector has sought to adapt to industry 4.0. High 
variations in the price of the oil barrel1 motivated companies to seek 
greater resilience in their projects. Furthermore, the demands for 
clean energies are causing traditional companies to rethink their 
operating strategy.2 However, the real application of digital technol-
ogies still involves much speculation. Areas related to well drilling, 
management of production plants, and oil and gas transportation, 
refining and marketing present opportunities in terms of automa-
tion.3 One of the oil industry's main challenges will be applying dig-
ital technologies in the exploration and reservoir characterization.

 
       The exploration and characterization of reservoirs involve de-
limiting a reservoir and translating it into a geological and flow 
model.4 These models are built with seismic data, well logs, rock 
and fluid samples, and formation tests. These data have different 
scales, ranging from less than centimeters to hundreds of meters, 
and have different characteristics. In this context, it is crucial to un-
derstand the current situation of digital technologies in areas re-
lated to the exploration and reservoir characterization, and outline 
prospects for technological transformation in the oil industry.

Current Situation of Digital Technologies in Explora-
tion and Reservoir Characterization

The primary source of information for reservoir models is rock 
samples. Laboratory analyzes and geological descriptions generate 
inputs for the geological model. However, the collection of these 
samples has a high cost, generating small and skewed databases 
compared to the traditional databases used in machine learning. 
The information obtained with rock samples is petro physical prop-
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erties such as porosity and permeability, chemical and mineralogi-
cal composition through petro graphic thin sections and X-ray fluo-
rescence and diffraction, and porous structure tomography.

Traditional machine learning algorithms, such as Multilayer 
Perceptron, Random Forest, and Gradient Boosting, can be used 
with petro physical properties to train models that will estimate 
porosity, permeability, and hydrocarbon saturation through well 
logs.5–7 These models will decrease upscale uncertainties. Convo-
lutional neural networks (CNN) make it possible to classify tomog-
raphy data, as well as to estimate petro physical properties.8,9 CNN 
can also assist in mineralogical identification and classification of 
rock type in petro graphic thin sections.10

The main source of data on a well scale is the well logs. In res-
ervoir characterization, these logs are calibrated with data from 
the rock samples to compose the geological model. In addition to 
the use in conjunction with rock samples, machine learning algo-
rithms can be used with wireline data to perform automatic litho-
logical classifications.11,12 Models can be trained to estimate other 
logs, allowing the imputation or replacement of logs with synthetic 
data.13,14

At the reservoir scale, one of the primary sources of informa-
tion is seismic data. These data are very noisy, making them diffi-
cult to interpret. Seismic inversion also presents several challeng-
es because it requires much time and computational power. The 
main applications of machine learning in seismic inversion are 
the creation of hybrid methodologies through CNN and generative 
adversarial networks (GAN), capable of decreasing the time and 
improving the inversion product's resolution.15,16 In seismic inter-
pretation, dimensionality reduction and clustering algorithms such 
as Self-Organizing Maps (SOM) can group seismic features.17,18 If la-
beled data exist, CNN can be used to identify faults and fractures.19 

The use of CNN and GAN can generate several geologically coherent 
models from seismic data.20

The information obtained from rock samples, well logs, and 
seismic is used to construct a geological model of the reservoir. This 
model is used in conjunction with dynamic data in flow simulation 
and historical matching. Machine learning algorithms can assist the 
simulation process, making them less costly.21,22 Some works pro-
pose using machine learning models to directly perform the histo-
ry matching.23 Relative permeability curves can be predicted from 
the production data based on artificial neural networks.24 Variables 
related to the wettability obtained in controlled mineralogy were 
observed from laboratory measurements analyzed by SOM.25

Perspectives
The data used in the exploration and reservoir characterization 

differ from conventional machine learning applications. AlexNet,26 

which revolutionized CNN's use in computer vision, was trained in 
a database of 1.2 million labeled images. In contrast, the databases 
observed in the exploration and reservoir characterization usual-
ly present little labeled data, as is the case with rock samples or a 
large amount of unlabeled data, in the case of seismic.

The expansion and integration of different information go 
through challenges such as upscale. Expanding the properties mea-
sured in rock samples for the well and seismic profiles go through 
sudden resolution jumps. Specialists overcome this challenge 
through the experience's perception, a characteristic that the artifi-
cial intelligence algorithms are not yet capable of reproducing.

The application of artificial intelligence does not bring immedi-
ate financial gains to the areas of exploration and characterization 
of reservoirs. In the short term, a reduction in costs is expected in 
wireline acquisition, with the generation of synthetic logs, and op-
timization in computational and working hour costs, with the aid in 
seismic inversion, history matching, and rock interpretation, logs, 
and seismic. The generation of synthetic information can reduce 
tests and experiments on rock samples through training in labora-
tory analysis databases.

The real gain from applying artificial intelligence in the explo-
ration and reservoir characterizationwould be to integrate several 
databases. These bases would be composed of data from different 
scales and resolutions, improving the geological models and pro-
duction simulation. Algorithms trained in several known reservoirs 
could predict productive characteristics of an area with very little 
information, improving exploratory success.

Environmental awareness points to a cleaner energy matrix. 
Even so, there will be specific needs for inputs from hydrocarbons. 
It will be up to the joint effort of oil and gas companies and edu-
cation and research institutions to evolve the industry into a new 
era, using artificial intelligence advances to increase their projects' 
efficiency.
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