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Abstract

To unify gravitational interaction with other three kinds of interaction are a work hadn’t been finished by Albert Einstein and a big problem that
human must solve to continue living in the universe. As the covariant derivative in gravitational theory, i.e., F’ t,l!r =¥ t.ir‘]‘ + J".‘,]‘ t.i.r‘]‘in general

relativity has similar structure to that in gauge theory, D = ﬂ‘ iy —

ieq; Ay i (itis worth mentioning that T,EJ'A =4,y -

Mi,ﬂ'l for the

covariant derivative for a covariant vector), people asked whether there would some links between the connection f;“, (or re . for covariant vector)
and the graviton, and whether gravity could be described by a gauge theory. Starting from quantum mechanlcs, the relationship between symmetry
and the invariance of the Lagrangian may be the essence of the gauge invariance € fa:8 Doy =0,e fa:8 Wiin gauge theory, which represents the
invariance of Lagranglan under a gauge transformation; therefore, a gauge theory 0fgrav1ty may also be built in a similar way from this relationship

Axa A
by 7, (9 [ "F‘;g;“] =g mH AT for which reason the covariant derivative of a tensor F #-"Jg must remain to be a tensor as the original tensor ﬁﬂ'ﬁ

and it leads to the existence of connection f' or J"

The conservation law has theoretical explanation in quantum
mechanics. When there is a symmetry, the system, i.e., a state would
keep invariant after a transformation which is under this symmetry.

Supposing there is a symmetry-, the transformation under this
symmetry is A , an arbitrary state is i, then * would be invariant
under transformation .-5, that is,

Ap=Cy (1)

where C is a parameter, and it could be proved that Hamiltonian
H is therefore also invariant:

ﬁz‘i = jﬁ (2)

If there is such a symmetry, for arbitrary state ¥

HAiw = HAoyp = ARy

there must be a complete set of the eigenstates of the Hamilto-
nian
Hepj=Hip;,j =012, (3)

That any state could be expanded by this complete set of the
Hamiltonian H:
Wi =X Cijo; 4)

thence

Hiy, = Hay, = AHy, =Z CyAHg, =Z €y AHjo; =Z €, AH;o; =Z CyAHp; = AHy,
i i i i

thatis (2)

When there is a symmetry A and its transformation to any state
is A, there is always (1) since there is symmetry, this leaves the
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Hamiltonian also invariant by the transformation under the sym-
metry, this invariance could be represented as the commutative
relation (2) and a conserved quantity could be derived there from.

For example, the conservations of energy and momentum
were led by the symmetry when the state was transported in time
and space, a state keeps invariant after such a transformation and
therefore there is commutative relations between the Hamiltoni-
an and the transformation operators for the transportations. The
transformation operator in time and space could be:

(4 xy }t.f:{x_u]' = T.f"'[x_u + ;jx_ﬂ} (5)

and it could be proved that any function could be expanded as
Taylor series:

o+ ax,) = 9(x,) + 82,50 )+ 2k ( ]¢{xu}+ )

n!

( au]ﬂ¢{x_u}+---
(6)

The proof of Taylor formula starts with Cauchy mean value
theorem which starts from Roll theorem, as Figure 1 shows, when
there is a continuous function f derivable in [a, b] , there must be a
£ between (2. B] that has zero derivative there:

d
S0, =0 7).

& b X

Figure 1: Roll theorem.

since there must be at least one extremum point between [z, 5]
if fla) = f{b). Supposing it is £, the right and left derivative at
this point satisfies

Flevasl-fs)

"= i = 8a
‘f+ .d.‘l:l'll—crI[L ax =0 (82)
Fle+axi—fFE)
—_ - .::
fo= x—-[:-+ ax =0 (8b)

when it is minimum, or

Flevasl—fis)

P -
‘f+ ﬂ_1lrl_.nnuj+ Ax =0 (8c)
lim Fle+dxl-fFlEl
=
fo= .r:lx—-[:l+ ax =0 (8d)

when it is maximum, and since the derivative exists in every
point of this region

F@=f,=f_=0 ©)

where & e [@, b].Lagrange mean value theorem could be
proved with Roll’s:

Define Figure 2

Volume 3 - Issue 1

|EI|_J|'||:||::x _ ﬂ]

Lix) =flx) - — (10)
J A
i Frg
o I
B l
|
| —
ot g b %
Figure 2: Lagrange theorem.

|ﬂ|_‘r|E|

the later part s (x —a) is the just the straight line be-
tween pomts.-fl{x = n,_j- = fla) } and E‘{x = b,y = f(b) }, then
one could apply Roll’s theorem as proved before, there must be a
point x = £ between [, ] whereL'(f) = 0, that is

i(f(xj _f®) —fla) (x_ﬂ])

=0
dx b—a

x=f

|5||__||-||:|

&) = £E la. B] (11)

(11) is the Lagrange mean value theorem. Cauchy mean value
theorem is one more step after Lagrange’s, f{x] and g{x] are two
functions of variable *, define:

X =g v = flx) L0 =0 -

Flpl—flal (g(x

glbl—glal

gla))

as shown in Figure 3, there must be a point £ € [a. B] that

makes:
d
pepat) |;— (12)
(ro-28y00)| -
Iﬂll glcl -
x=f
g :‘rlgl_;'l,:l
grl"l'l gli;ll_glgl (13)

Ol 9(/ %%é‘)

Figure 3: Cauchy theorem.

where £ € [a, B] (13) is Cauchy mean value theorem. Using
Cauchy’s mean value theorem could prove that any function f (x)

could be expanded as Taylor series:
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foy =l Do By s 250G g R, @)

o!

n+ |.-.|| i
where Ry, ':J-'] could be proved to be L d (x — :!:D]r"”' and§ € [xn,x]

(n+10!

Ralx})  Ry() —Ry(xy) Ry (E,) _ R§)-Rplxy) Rp(E) —Ry(x)
(r—xpdm*t 7 r—xd™ T n+ D —x" o+ DE —x" (4 Dl —xgdm=t
R:gn+LI(‘:rn+J.] _R;E+LI(3"D] R;n+LI(‘En+L]

(n+10 T on1d

where any Hl'kl (xp)=0 because
b | 411, 25 “l (51
f®) = I" %fx xu]‘l‘ x" (x — xg e L L (x i "+RK':x]

£ ':-‘fn] - f_k':xn] + R;’fl [xD],Rr'-!k' ':-‘fn-] = 0;moreover, when k = n,
f[m[x] — erlr_”{x]
f':”""-'(x] = R:!n"'“l:x]

therefore
ey Rl:hlz_l')':{lz—l' f:'lz_ljl:Flz—Ll
(x—xgm#l (n+ndt (m+11!

(2] Mlan ] " ix - (M iy [F
Fo) =L Do)+ L0 e # T = ) 4 st (e

ol (n+11!

and when ™ = %2 $ner %1, that is the Taylor series expansion we always encountered:

[xn) Mlxn ] T ixnd n Ty R Ty
Fo) =B TG ) + L Pt + E 2 — )+ o (- ) 4

o!

s, ol = w05+ 01, o) + (2 ) g ) e 220 (2

2!

and according to Euler’s formula,

|_,{|- [k

Axy .

& )
Tﬁ{d xu }w{x_u } = Fﬂ "o, w{x_u } = F]_"Epﬂ w{x_u }

Volume 3 - Issue 1

(14)

(15)

(16a)

(16b)

(7

(18)

(19)

(20)

(21)

where P& is four-dimensional momentum operator, and because of the symmetry, the system remains invariant under such transfor-

mation,

f{d Xy }#’{x_u } =Ly {x_u }

(22)

where C is a parameter, the transformation T only added the system a phase and the state kept invariant, this leads to

f{f_'l X, }ﬁ =HT {‘r—"x_u }

thatis

(1+ +L°“'+---[i‘fk+ )H‘ H‘(1+ +L"“'+ LE;!:’k+ )
Since

[5,.8] = —miﬂ

(23)

(24)

(25)
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(24) is equivalent to
4!\%.51' (4n%]5§+(4n%]®u
FTR F]
’ A+ (—ih %J‘_Lﬁﬁﬂ +ot (—:’h

ih o )E—u
- dx -

as this must be valid to any state t,f.r{x_u },

) A5 ¢ (-

k!

) #6) 7+ (a6

[5..H] =0 (26)
ie.,
aPu =0 27)

the four-dimensional momentum ;'3_” is a conserved quantity,
this conservation comes from the symmetry when the system was
transported in space and time. And since ,,’:’?u is a conserved quanti-
ty, the effect of this transformation |—f‘-n,, to any state 3*would be
D"T#' and this is just to add a phase to the state, and the state
keeps invariant under the transformation.

In gauge theory for the electromagnetic interaction, the system,
i.e., a statey; of electromagnetic field, must keep invariant under a

transformation:

Wi — Y = e Uy, (28)

because of the conservation of electric charge and gauge invari-

ance, it is required that:

&y — ﬂ Y = &, { ~i 7#} = F"-‘“Eﬂuﬁff.' (29)

which is to remain the Lagrangian invariant,ﬁ}: = ﬁ_‘u because
the transformation doesn’t change the coordinate *u in 3 .This
invariance could be from a symmetry @ in the field, of which the
transformation under this symmetry is Iﬁ, and the state keeps in-
variant after a transformation under this symmetry:

G = e~ 9%y, (30)

.This requires that the Lagrangian (Lagrangian and Hamiltoni-

an <ame represent the energy of the system, as a function of only
s Pu

, where 92 and Pu are general coordinates and momen-

= 12,000 ,m,

tums respectively, ¥ ) must keep invariant after a

transformation, therefore there must be

Volume 3 - Issue 1

[e-48. 4] =0 31)

where{is a conserved quantity since [E_'qE,H] = Ofor the
symmetry as well. This is electric charge conservation, and the
transformation would be:

Yy =Yy = E_IEEWI = F"q‘sf.ffr

whereg; is the value of the conserved quantity § of the state, and

(32)

since the Lagrangian consists of only {fi‘_u +Pu }, ie,£=£( Qu- Py ),and

itis £ = L{ﬁﬂ"ﬁﬂ] after quantization, since r’j_u =y Py = —ih i,
then (31) would lead to
[g_l-lfs‘lp".u] =10 (33)

this is exactly (29), the gauge invariance after a gauge transfor-
mation in the gauge field for electromagnetic interaction, it is be-
cause of a symmetry, i.e., , under which the transformation opera-
toris 'ii, and it is the reason for the conservation of electric charge.

In summary, the gauge invariance in electromagnetic field orig-
inates from a symmetry, and the transformation under this sym-
metry keeps the system invariant, such a transformation is a gauge
transformation, and the transformation must keep the Lagrangian
invariant. This invariance leads to (31), which is equivalent to:

g, E'"‘?Ef.ffr = gld® a, i (34)

where § = g;for the conservation of electric charge, led by that
the transformation keeps the Hamiltonian invariant (31), and this
is exactly (29) in the gauge theory for the electromagnetic field, it
represents the invariance of the Lagrangiansame as (31).

Moreover, usually the factor 8 in the gauge transformation (30)
is local, not global anymore, that is, & would be a function of xi.e.,
8= E{xu }and not a parameter anymore, but the Lagrangian still
keeps in\./ariant under the transformation, therefore there could be
a modification to the partial derivative:

% =D, =4

- inl'A-u (35)

to keep
' Dy = D'ty (36)

still equivalent to (31) as (33) did when the g was global. The
Lagrangian must keep invariant as (31) represented because of the
symmetry the transformation was under, andﬂu is called the co-

variant derivative in the gauge theory for the electromagnetic field.

By calculating, when there is (35), there must be:

gldif {Er —ieg;A }zpl —{B — ieg;A u}{ ig;8 }
glaif {ﬂ' —ieg;A }zlfrl _I::ﬂ' _“"]'r'q }{ ig;f }
_quf"q.ﬂ Elqi T|ﬂ'|' = {auglqiﬂ}wf —ia?f]'f-"‘i_rraﬁlqi t|ﬂ'|'

qu"‘q.f: E"'.q"ﬂ?.ff.' = {ﬂu g'dif }":ufﬂ + EE‘f]'|'-'1_u E"*“E?.ffr
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A {au Ellqiﬂ}wl' + qul"'q.u Fllqiﬂwl'
s igql'gl.qiﬂtlbl'

r_ L -igf g Qg8
Ay =4, + — d,e

(37)

and A_u in O, is the photon which is the gauge particle of the
gauge field for electromagnetic interaction.

The structure of covariant derivative in general relativity,

Twi = auf + Livg - Lpwd (36)

is similar to that in gauge theory, and the connections J'Lﬁ and
I;]'J; therein also have similar properties as .-1_“ in Efu , which is the co-
variant derivative of the gauge field for electromagnetic field, they
keep i.'ﬁ t,irjg still a tensor after 'FL exerted on a tensor w,_i? in the grav-
itational field, which should be a state therein.

Historically, people asked whether such a connection may at
least have some links with the graviton, the gauge particle of the
gauge field for gravitational interaction, it is also what the gravita-
tional wave consists of. According to the relationship between sym-
metry and the gauge invariance as shown before, this invariance
should also be led by a symmetry Fin the gravitational field which
leaves any state in the field invariant after a transformation under
this symmetry, and the relation for the invariance of the state (2),
should still be similar to (31) and result in a similar relation as (36)
between the transformation and the state in gravitational field, sup-
posing such a transformation is Pn,

PR yg = NPyf 37)

which is equivalent to the invariance of the Lagrangian,

as (31), and this invariance requires that '-_‘{Et,ifg must still be a
tensor as T.ffgto enable

PUwE = TS = CTug
C

(39)

where “ is a parameter, because there must be Pnill!fg = Cyg

for the symmetry.

The counterpart quantity to electric charge in electromagnetic
field is massin gravitational field, and mass is a combination of en-
ergy and momentum according to relativistic mechanics:

E? =p%c? +mict = mict (40)

the symmetry that keeps the mass conserved is probably still
the transportation symmetry in the conservations of energy and
momentum as (22) represented, a state is invariant when it was
parallel transported in the space time, and the transformation op-
erator is still

Volume 3 - Issue 1

Axy .

i
Adxy—— i
Ha"'r-l = gl [} Pp

Tn{dx_u} =g (41)

in (21), as proved before, and the invariance of the state after
the transformation leads to

dry. 0 dxy.
g n TRrH = Hg'™n P (42)
and it leaves the four-dimensional momentum g, conserved,
therefore §, = p,, where g, is the value
of the conserved quantity 3’3_”, and the relation would be

ax

e
g h "EFH=Hg h“H (43)

&
If a state in the gravitational field iswﬁ , then (43) is equivalent
to

Ax Ax

7 (g = Ty ”

for Hamiltonian only consists of [x_u,p_u) and their opera-
tor are §, = x,, B, = —Ehi, this requires that F{Jt,ﬂfg is same a
tensor as '?,fré" td make sense of the calculation. When we came to
(43), since Efu T.ff,? is not always same a tensor as t,l!rj‘;, we can’t get
8, (g"ifﬂpuwg]: g"a—:'“-“uqﬂu}g, but the symmetry demands that there
must be (43), so we could construct the covariant derivative (36)
in gravitational field to and we could get (44) which is equivalent
to (43); therefore, '-_‘; t,ffjg also must still be a tensor as T.f-’g, (44) ex-
presses the invariance of Hamiltonian after the transformation un-

der the transportation symmetry. As Einstein’s gravitational field

finally is
P =0 (45)
where PEY is the energy-momentum tensor, gravity may also be

described by a gauge theory as (44).
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