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The conservation law has theoretical explanation in quantum 
mechanics. When there is a symmetry, the system, i.e., a state would 
keep invariant after a transformation which is under this symmetry.

Supposing there is a symmetry , the transformation under this 
symmetry is , an arbitrary state is , then  would be invariant 
under transformation , that is,

             (1)

where  is a parameter, and it could be proved that Hamiltonian 
 is therefore also invariant:

             (2)

If there is such a symmetry, for arbitrary state 

there must be a complete set of the eigenstates of the Hamilto-
nian 

,    (3)

That any state could be expanded by this complete set of the 
Hamiltonian :

    (4)

thence

that is (2)

When there is a symmetry  and its transformation to any state 
is , there is always (1) since there is symmetry, this leaves the 

Abstract

To unify gravitational interaction with other three kinds of interaction are a work hadn’t been finished by Albert Einstein and a big problem that 
human must solve to continue living in the universe. As the covariant derivative in gravitational theory, i.e., in general 
relativity has similar structure to that in gauge theory, (it is worth mentioning that  for the 
covariant derivative for a covariant vector), people asked whether there would some links between the connection  (or  for covariant vector) 
and the graviton, and whether gravity could be described by a gauge theory. Starting from quantum mechanics, the relationship between symmetry 
and the invariance of the Lagrangian may be the essence of the gauge invariance in gauge theory, which represents the 
invariance of Lagrangian under a gauge transformation; therefore, a gauge theory of gravity may also be built in a similar way from this relationship 
by , for which reason the covariant derivative of a tensor  must remain to be a tensor as the original tensor 
, and it leads to the existence of connection  or . 
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Hamiltonian also invariant by the transformation under the sym-
metry, this invariance could be represented as the commutative 
relation (2) and a conserved quantity could be derived there from. 

For example, the conservations of energy and momentum 
were led by the symmetry when the state was transported in time 
and space, a state keeps invariant after such a transformation and 
therefore there is commutative relations between the Hamiltoni-
an and the transformation operators for the transportations. The 
transformation operator in time and space could be:

   (5)

and it could be proved that any function could be expanded as 
Taylor series:

 
      (6)

The proof of Taylor formula starts with Cauchy mean value 
theorem which starts from Roll theorem, as Figure 1 shows, when 
there is a continuous function  derivable in , there must be a 

 between  that has zero derivative there:

             (7),

since there must be at least one extremum point between  
if . Supposing it is , the right and left derivative at 
this point satisfies

         (8a)

         (8b)
when it is minimum, or 

         (8c)

         (8d)

when it is maximum, and since the derivative exists in every 
point of this region

    (9)

where .Lagrange mean value theorem could be 
proved with Roll’s:

Define Figure 2

  (10)

the later part  is the just the straight line be-
tween points  and , then 
one could apply Roll’s theorem as proved before, there must be a 
point  between where , that is 

,       (11)

(11) is the Lagrange mean value theorem. Cauchy mean value 
theorem is one more step after Lagrange’s,  and  are two 
functions of variable , define:

, , 

as shown in Figure 3, there must be a point  that 
makes:

           (12)

that is

 

           (13)

where  (13) is Cauchy mean value theorem. Using 
Cauchy’s mean value theorem could prove that any function  
could be expanded as Taylor series:

Figure 1: Roll theorem.

Figure 2: Lagrange theorem.

Figure 3: Cauchy theorem.
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             (14)

where  could be proved to be  and 

Applying Cauchy mean value theorem

where any ,because

         (15)

, ;moreover, when , 

             (16a)

            (16b)

therefore 

         (17)

  (18)

and when , , that is the Taylor series expansion we always encountered:

 (19)

 Applying (19) to (5) one could get (6), that is

and according to Euler’s formula, 

         (20)

             (21)

where  is four-dimensional momentum operator, and because of the symmetry, the system remains invariant under such transfor-
mation, 

          (22)

where  is a parameter, the transformation  only added the system a phase and the state kept invariant, this leads to 

           (23)

that is

          (24)

Since

           (25)
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(24) is equivalent to 

therefore 

as this must be valid to any state ,

     (26)
i.e.,

     (27)

the four-dimensional momentum  is a conserved quantity, 
this conservation comes from the symmetry when the system was 
transported in space and time. And since  is a conserved quanti-
ty, the effect of this transformation  to any state would be 

, and this is just to add a phase to the state, and the state 
keeps invariant under the transformation.

In gauge theory for the electromagnetic interaction, the system, 
i.e., a state of electromagnetic field, must keep invariant under a 
transformation:

           (28)

because of the conservation of electric charge and gauge invari-
ance, it is required that:

        (29)

which is to remain the Lagrangian invariant,  because 
the transformation doesn’t change the coordinate  in .This 
invariance could be from a symmetry  in the field, of which the 
transformation under this symmetry is , and the state keeps in-
variant after a transformation under this symmetry:

    (30)

.This requires that the Lagrangian (Lagrangian and Hamiltoni-
an same represent the energy of the system, as a function of only 

, where  and  are general coordinates and momen-
tums respectively, ) must keep invariant after a 
transformation, therefore there must be

           (31)

where is a conserved quantity since for the 
symmetry as well. This is electric charge conservation, and the 
transformation would be:  

          (32)

where  is the value of the conserved quantity  of the state, and 
since the Lagrangian consists of only , i.e., , and 
it is  after quantization, since , , 
then (31) would lead to 

           (33)

this is exactly (29), the gauge invariance after a gauge transfor-
mation in the gauge field for electromagnetic interaction, it is be-
cause of a symmetry, i.e., , under which the transformation opera-
tor is , and it is the reason for the conservation of electric charge.

In summary, the gauge invariance in electromagnetic field orig-
inates from a symmetry, and the transformation under this sym-
metry keeps the system invariant, such a transformation is a gauge 
transformation, and the transformation must keep the Lagrangian 
invariant. This invariance leads to (31), which is equivalent to:

           (34)

where for the conservation of electric charge, led by that 
the transformation keeps the Hamiltonian invariant (31), and this 
is exactly (29) in the gauge theory for the electromagnetic field, it 
represents the invariance of the Lagrangiansame as (31).

Moreover, usually the factor  in the gauge transformation (30) 
is local, not global anymore, that is,  would be a function of ,i.e., 

and not a parameter anymore, but the Lagrangian still 
keeps invariant under the transformation, therefore there could be 
a modification to the partial derivative:

   (35)

to keep 

   (36)

still equivalent to (31) as (33) did when the  was global. The 
Lagrangian must keep invariant as (31) represented because of the 
symmetry the transformation was under, and  is called the co-
variant derivative in the gauge theory for the electromagnetic field.

By calculating, when there is (35), there must be:
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          (37)

and in is the photon which is the gauge particle of the 
gauge field for electromagnetic interaction.

The structure of covariant derivative in general relativity,

         (36)

is similar to that in gauge theory, and the connections  and 
therein also have similar properties as  in , which is the co-

variant derivative of the gauge field for electromagnetic field, they 
keep  still a tensor after  exerted on a tensor  in the grav-
itational field, which should be a state therein.

Historically, people asked whether such a connection may at 
least have some links with the graviton, the gauge particle of the 
gauge field for gravitational interaction, it is also what the gravita-
tional wave consists of. According to the relationship between sym-
metry and the gauge invariance as shown before, this invariance 
should also be led by a symmetry in the gravitational field which 
leaves any state in the field invariant after a transformation under 
this symmetry, and the relation for the invariance of the state (2), 
should still be similar to (31) and result in a similar relation as (36) 
between the transformation and the state in gravitational field, sup-
posing such a transformation is , 

           (37)

which is equivalent to the invariance of the Lagrangian,

            (38)

as (31), and this invariance requires that  must still be a 
tensor as to enable

          (39)

where  is a parameter, because there must be  
for the symmetry.

The counterpart quantity to electric charge in electromagnetic 
field is massin gravitational field, and mass is a combination of en-
ergy and momentum according to relativistic mechanics:

          (40)

the symmetry that keeps the mass conserved is probably still 
the transportation symmetry in the conservations of energy and 
momentum as (22) represented, a state is invariant when it was 
parallel transported in the space time, and the transformation op-
erator is still

   (41)

in (21), as proved before, and the invariance of the state after 
the transformation leads to

           (42)

and it leaves the four-dimensional momentum  conserved, 
therefore , where  is the value

of the conserved quantity , and the relation would be

           (43)

If a state in the gravitational field is , then (43) is equivalent 
to

   (44)

for Hamiltonian only consists of  and their opera-
tor are , , this requires that  is same a 
tensor as  to make sense of the calculation. When we came to 
(43), since  is not always same a tensor as , we can’t get 

, but the symmetry demands that there 
must be (43), so we could construct the covariant derivative (36) 
in gravitational field to and we could get (44) which is equivalent 
to (43); therefore,  also must still be a tensor as , (44) ex-
presses the invariance of Hamiltonian after the transformation un-
der the transportation symmetry. As Einstein’s gravitational field 
finally is 

            (45)

where  is the energy-momentum tensor, gravity may also be 
described by a gauge theory as (44).
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